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ABSTRACT

Seamless prediction means bridging discrete short-term weather forecasts valid at a specific time and time-

averaged forecasts at longer periods. Subseasonal predictions span this time range andmust contend with this

transition. Seamless forecasts and seamless validation methods go hand-in-hand. Time-averaged forecasts

often feature a verification window that widens in time with growing forecast leads. Ideally, a smooth tran-

sition across daily to monthly time scales would provide true seamlessness—a generalized approach is pre-

sented here to accomplish this. We discuss prior attempts to achieve this transition with individual weighting

functions before presenting the two-parameter Hill equation as a general weighting function to blend discrete

and time-averaged forecasts, achieving seamlessness. The Hill equation can be tuned to specify the lead time

at which the discrete forecast loses dominance to time-averaged forecasts, as well as the swiftness of the

transition with lead time. For this application, discrete forecasts are defined at any lead time using a

Kronecker delta weighting, and any time-averaged weighting approach can be used at longer leads. Time-

averaged weighting functions whose averaging window widens with lead time are used. Example applications

are shown for deterministic and ensemble forecasts and validation and a variety of validation metrics, along

with sensitivities to parameter choices and a discussion of caveats. This technique aims to counterbalance the

natural increase in uncertainty with forecast lead. It is not meant to construct forecasts with the highest skill,

but to construct forecasts with the highest utility across time scales from weather to subseasonal in a single

seamless product.

1. Introduction

The notion of seamless weather-to-climate prediction

as a unified numerical modeling problem has been with

us for at least a decade (WCRP 2005; Shukla et al. 2009;

Shapiro et al. 2010; Brunet et al. 2010). However, there is

an unescapable transition between weather forecasting

as a deterministic initial-value problem to the probabilistic

nature of longer-term time-averaged forecasts necessitated

by the nonlinear character of the atmosphere–land–ocean

system. Weather predictions validate on the shortest time

interval of reported forecasts, which we define as ‘‘dis-

crete’’ forecasts. These are typically hourly for nowcasting

and short-term weather forecasting, or as daily accumula-

tions and averages out to as much as 2 weeks. These give

way to longer-term means issued as ‘‘outlooks’’ by oper-

ational forecast centers on monthly or seasonal intervals.

In fact, the coverage of the spectrum of time scales is not

uniform, and prediction has focused on very specific ranges

frequently tied to the calendar (Hoskins 2013).

In the middle of this dichotomy between discrete

forecasts (and their validation) and longer-lead proba-

bilistic time averages (and their validation) lies the so-

called subseasonal-to-seasonal or S2S range of time

scales. Recent efforts have been focused on under-

standing predictability and improving prediction skill in

the S2S time range while endeavoring to use the same

model configuration from weather to seasonal time

scales (Vitart et al. 2017; Mariotti et al. 2018; Pegion

et al. 2019). There has been much hope to extend

weather forecast skill to weeks 3–4, but promising
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prospects have been coming along slowly (Newman

et al. 2003; Vitart 2014). Meanwhile, seasonal climate

forecasts such as the outlooks issued by the Climate

Prediction Center of NOAA, for example, begin with a

0.5–1.5-month lead-time average and include monthly

and 3-month means that step forward in monthly inter-

vals (Saha et al. 2014). This results in quite a prominent

‘‘seam’’ in the range where seamless forecasts have been

envisioned.

Forecast uncertainty necessarily grows with lead time,

so the characteristics of a forecast change markedly in

the transition from weather to S2S time scales (Ebert

et al. 2013). A key characteristic of the subseasonal

transition is that uncertainty, and thus skill, is a function

of the averaging period, both its width in days and the

lead time of the forecast. One way to define a ‘‘seamless

forecast’’ is one where the uncertainty is relatively

constant with lead time, or at least ameliorated relative

to the rapid decay of discrete deterministic forecasts

verifying at a single point in time. One way to achieve

that is to define the forecast, and its validation, over an

averaging window that changes with lead time. This has

many repercussions for forecast characteristics like er-

ror growth and saturation (Buizza et al. 2015), but fol-

lows our expectations of forecast predictability.

Imagine a situation where a brief but severe cold snap

is predicted to occur 7 days after the initial time of a

forecast, with unremarkable temperatures preceding

and following the event. The event transpires much as it

was predicted, except that the cold day arrived on the

eighth day instead of the seventh day. A classical de-

terministic weather forecast validation, which is discrete

in time (at least to the resolution of individual days),

would severely punish the forecast for its 1-day timing

error. Nevertheless, the forecast’s usefulness to interests

such as farmers, electric utilities, first responders, and

others who can use the intervening period to prepare is

hardly impacted by the relatively small timing error. On

the other hand, a time average forecast such as weekly

mean temperatures would likely obscure the brief but

extreme event hampering preparations. At that time

scale, a 3-day mean could capture the severity and tim-

ing of the event with useful accuracy. It is easy to

imagine similar situations for heat or precipitation, and

at a variety of lead times.

Zhu et al. (2014) were among the first to concoct a

sliding window, in which the validation of precipitation

forecasts was performed over a window equal in width to

the forecast lead time. More recently, a weighting

scheme in time based on a Poisson function has been

used to transition from a sharply peaked short-term

average of forecast and validation data to a widening

Gaussian distribution at time scales beyond a week or

two (Ford et al. 2018; Dirmeyer et al. 2018). This ap-

proach, applied to heat wave forecasts in the former case

and general meteorological variables like temperature,

humidity, and precipitation in the latter case, have

suggested a way forward to a smooth and seamless

transition between weather and climate time scales.

However, there is utility for discrete weather forecasts

in the classical sense from 0 out to some number of days

N, whose value depends on many factors but ultimately

boils down to the duration of useful skill in the forecast.

Ideal seamlessness would involve a way tomaintain such

classical weather forecasts for some period beyond the

forecast initial date, and then seamlessly transition them

to time averages so as to maintain useful skill and slow

the growth of uncertainty with lead time. Within such a

framework, the probabilistic attributes afforded by en-

semble forecasts should also be fully accommodated.

In this study, we have refined the technique described

in (Ford et al. 2018) to retain a discrete forecast ap-

proach over an arbitrary period of short-term forecasts,

and allow for a controlled transition to time-mean

forecasts. Section 2 examines the conceptualization

with several approaches to the problem. Specific appli-

cations are demonstrated in section 3, including en-

semble forecasts and validation. A discussion including

caveats and considerations regarding parameter selec-

tion for the scheme are presented in section 4.

2. Weighting schemes

There are two aspects to seamless S2S forecasting.

One is the retention of different treatments at short and

long leads (i.e., discrete forecasts at short lead times),

and some form of time average at longer lead times. The

second, the key to seamlessness, is determination of a

way to transition smoothly from one to the other as

forecast lead increases. An ideal approach would have

all of the characteristics in these two aspects.

For our examples, we define the shortest time scale,

that for the discrete forecasts, as daily, thus avoiding

fluctuations within the diurnal cycle. Daily means or

totals are the basic increment of data considered, except

for temperature extrema (maxima and minima) which

can be traditional instantaneous values that are dis-

cretized at a daily interval. This corresponds well with

muchmodel forecast and hindcast data such as that from

the international S2S prediction project database (Vitart

et al. 2017) or the Subseasonal Experiment (SubX;

Pegion et al. 2019). The validation day for any forecast is

defined as a lead time in days from the initial state (t).

The forecast may represent the state only at day t for

discrete forecasts, or as the indicator day of a time av-

eraged forecast, which may be the central day or the
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most heavily weighted day. For instance, a typical

weekly (7 day) mean would be a flat average of daily

means or values over the period from t 2 3 through t 1
3. However, given a forecast or ensemble of forecasts

produced by a numerical model out to dayN, the forecast

associated with validation time t could be a weighted

average in time over someor all days from1 toN, with the

weights for each day changing with t.

In an attempt to address both aspects of seamless S2S

forecasting in a single formulation. Ford et al. (2018) and

Dirmeyer et al. (2018) used a time weighting based on a

Poisson function:

P
t,k

5
tke2t

k!
, (1)

where forecast data from multiple lead times k con-

tributes to the averaging over multiple days of the

forecast. Note that the function Pt,0 has nonnegligible

values for small t; k 5 0 corresponds to the initial state

of the forecast, or more accurately the daily mean, total

or extreme from the 24-h period preceding the initial

condition. It is certainly admissible to include this in a

forecast, representing in some sense an element of per-

sistence from conditions at the time of the forecast, but

for each t the value of Pt,0 was set to 0 and the other

terms renormalized so �tPt,0 5 1 by Ford et al. (2018)

and Dirmeyer et al. (2018) to focus on the performance

of the forecast models. Thus, at any lead t, from a

forecast out to N days, the Poisson-weighted forecast of

variable A is

F
t
5
�
N

k51

A
k
P
t,k

�
N

k51

P
t,k

. (2)

The Poisson function applied as a weighting function

in this way has some of the desirable characteristics: it is

very narrow and peaked at t 5 1, mimicking a discrete

forecast, while transitioning to a broad averaging func-

tion approaching a Gaussian distribution for large t. In

fact, its standard deviation is simply
ffiffiffi
t

p
. This gives it the

property of transitioning from a front-weighted forecast

at very short leads while widening and centering the

averaging window as lead time increases. It applies to

discrete integer values of k (days), and the integral over

the entire range of k is 1 for any value of t.

While the Poisson function is mathematically elegant,

it does not have all of characteristics desired for seam-

less S2S forecasting. It does not have independent tun-

able parameters; k must be an integer, and t must be

defined in the same terms as k. Scaling t to make Pt,k

wider or narrower in time introduces the need to rescale

the function so the area under the curve, the sum of

weights, remains equal to 1. A lognormal function could

prove more tunable, but would share the problem that

some averaging across days occurs even for the first day

of the forecast. For most variables and applications, it is

desirable to maintain discrete daily forecasts for several

days, perhaps a week or longer, before transitioning to

an averaging scheme. A possible solution is to delay

application of the Poisson function until some arbitrary

number of days into the forecast (i.e., apply an offset to

t and keep discrete forecasts for the first N days). The

inflexibility of the behavior of the Poisson function

could lead to such compromises.

A more graceful solution is to follow an approach like

(Zhu et al. 2014) but with a tunable parameter to allow

for the first several days of a forecast to be discrete daily

values instead of time means. One possibility is to use a

window function centered on forecast lead time t with a

width v that grows with lead. One form of such a func-

tion is

v5 2 int(w
ffiffiffi
t

p
)2 1: (3)

In this case, a uniform weighting is applied over the

window, such that

V
t,k

5

�
1/v 2jt2 kj2 1,v

0 otherwise
. (4)

One may also put a limitation on v so that it does

not widen to include forecast nonpositive leads such

as the forecast initial state or past states: v5
min[2 int(w

ffiffiffi
t

p
)21, 2t2 1]. The factor w controls the

rate at which the width of the averaging window grows

with lead time. In the examples below, we will examine

three values: 1.0, 1.4 and 2.0.

Functions related to gamma distributions like the

Poisson or lognormal functions could be advantageous

where the evolution of predicted phenomena mathe-

matically reflect those forms, such as stream discharge

after intense rain. Yet the window weighting function

has some advantages. Its uniform weighting across the

days included in the averaging is simple and familiar. It

is also tunable by choice of a single parameter w, while

the Poisson function has a fixed evolution of its shape.

However, the tuning is limited; this and similar single-

parameter functions have the characteristic that the

number of days at the start of the forecast that have no

averaging applied (discrete with a window width of

1 day) has an invariant relationship to the averaging

period. One may want more control over the number of

days when there is no averaging applied, before the

transition to a growing window at longer leads.

SEPTEMBER 2020 D I RMEYER AND FORD 3591

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/30/24 02:23 PM UTC



An effective weighting function exists for a discrete

daily forecast–it is the Kronecker delta:

d
t,k

5

�
0 t 6¼k

1 t5 k
. (5)

It also has the properties that it applies to integers of k

and its sum over all values of k is 1 for any value of t.

That means blending by any linear combination of the

Kronecker and weighting functions like the Poisson or

window functions, or others, as long as their coefficients

also sum over time to 1, will be well behaved.

Figure 1 shows the characteristics of these functions

for a selection of values of t. Because the Poisson distri-

bution converges to a normal distribution at large t, we

can estimate from the standard deviation that at a 30-day

lead, 90% of the distribution spans the 18 days centered

on day 30, at a 60-day lead the span is about 251/2 days,

and at a 90-day lead, the span is a little over 31 days,

showing how a Poisson weighting for forecast averaging

comes to resemble a monthly mean at a one-season lead.

The window function for the values of w shown spans

9–19 days at a 30-day lead and 13–29 days at a 60-day lead.

Multiday averages begin after 1, 2, and 3 days forw5 1.0,

1.4, and 2.0, respectively.

The most general approach would be to have a

method to blend Kronecker and any arbitrary time-

averaged distributions that accomplishes a seamless

transition between discrete and time-mean forecasts

that is easy to apply and flexible, so a user can customize

the blending. This would be an adaptable approach for

S2S applications. Such a blending function needs to be

able to maintain a delta-like behavior beyond day 1,

having something like an S-shape, and the inflection

point should be a selectable parameter. The Hill equa-

tion (Hill 1910) satisfies these criteria, spanning the

range 0–1 for all positive integers t using only two pa-

rameters; for this application we use the form:

H
t
5

1

t2 1

a2 1

� �b

1 1

, (6)

where b controls the shape of the distribution (i.e., how

quicklyHt transitions from 0 to 1), and a corresponds to

the forecast verification time t at which the function

crosses the central value of 0.5. Using this blending

function, we have a weighting function of the form:

W
t,k

5H
t
d
t,k

1 (12H
t
)D

t,k
, (7)

where Dt,k can be Pt,k, Vt,k, or any other distribution

function whose weighting properties are conserving, and

the forecast of variable A at lead t is

F
t
5
�
N

k51

A
k
W

t,k

�
N

k51

W
t,k

. (8)

The denominator is necessary when the lead time ap-

proaches the end of the forecast durationN, wherein the

sum of the weights begins to drop significantly below 1.

Figure 2 shows several examples of distributions of

Ht, and Fig. 3 shows some distributions ofWt,k. For any

value of a, a larger value of b will produce a sharper

transition from discrete to time-averaged forecasts. Too

large a value of b effectively reintroduces the seam into

the seamless forecast. As can be seen in Fig. 3, the Hill

equation can be tuned to achieve the desired combina-

tion of transition lead time and sharpness of the transi-

tion. The tuning may be chosen to maintain a specific

level of uncertainty or error growth in the forecasts, a

possibility not explored here, or to meet specific user

needs. For example, the construction industry may want

discrete forecasts out to one week to plan the deploy-

ment of materials and labor on job sites, but find the

increased skill of time-averaged forecasts at longer leads

useful to plan for the ordering and shipment of supplies.

FIG. 1. (a) Poisson distributionweights [Pt,k in Eq. (1)] as a function

of lead time k in days for a range of forecast validation lead times t.

(b) The width of the window weighting distribution for indicated

values of w as a function of t. (c) An example of the Kronecker delta

employed as a weight to represent discrete daily forecasts.
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3. Example applications

Applications of the Poisson distribution by itself as a

weighting function to create seamless predictions have

been shown previously (Ford et al. 2018; Dirmeyer et al.

2018). Here we will show examples using the window

function alone, theHill function as a blendingmethod to

control the transition to time-averaged weighting, and

examples involving ensemble forecast statistics that are

an essential part of S2S forecasting. We do not provide

an exhaustive set of seamless prediction examples, but

rather a sampling to demonstrate the possibilities and

the behaviors of these various approaches.

a. Considerations for validation data

One characteristic of these seamless approaches to

forecast validation is that the validation data, typically

either observations or reanalysis, must acquire a second

time dimension. In other words, the validation states are

not only a function of the calendar date, but also the lead

time of forecast to be validated, because of the varying

distribution functions applied. This is not as novel as it

may seem. Daily versus pentad or monthly mean data

has this characteristic in discrete jumps. Moving aver-

ages with different sized windows also present different

values for the same calendar day. The difference here is

that a full spectrum of lead times is present. If applied to

the SubX model forecast data, maximum lead times

range from 32 to 45 days depending on the model

(Pegion et al. 2019). For the international S2S prediction

project, several models archive forecasts of 60 days or

more. Operationally, seasonal prediction systems may

have forecast durations of several months out to a year.

Figure 4 shows how the seamless weighting using the

Hill function to blend Kronecker and window distribu-

tions affects validation time series. Examples are shown

for wintertime temperatures over the northern United

States, and summer rainfall over central India. At long

lead times relative to the value of a, individual time

series smooth and the curves representing different

initial conditions (ICs) converge. However, near the IC

(start of each curve in Figs. 5b and 5d) the effect of the

FIG. 3. Examples of the blending weight [Wt,k in Eq. (8)] as a

function of lead k for a range of forecast validation lead times t

(interval of 3 days starting with t 5 1), with indicated choices of

a and b. The examples progress from (a) a very quick transition

from discrete to time averaged with lead to (d) a long period with

daily forecasts transitioning to more weight toward time-averaged

forecasts after a lead of 10 days.

FIG. 2. Examples of the shape of the Hill function [Eq. (7)]:

(a),(b) for the indicated values of a across the indicated range of

b and (c) for the indicated value of b across the indicated range

of a.
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Kronecker weighting and its transition to the window

weighting are evident in the increased detail mirroring

the daily time series. Also, for the 1 November IC of

temperature and the 18 August IC for precipitation,

three different choices of the Hill function parameters

are shown, displaying how the delay and rate of transi-

tion can be carefully controlled. For precipitation, the

ability to resolve the extreme daily rainfall total on

22 August is clearly affected by the choice of parame-

ters. Use of other time-averaging functions like the

Poisson function has similar effects (not shown).

b. Sensitivity to Hill parameters

When subseasonal predictions are validated using a

range of parameters for the Hill function, we can see

how skill estimates vary. Figures 5 and 6 show results for

2-m air temperature validation of the Beijing Climate

Center Climate Prediction System version 1 used by the

Chinese Meteorological Agency (CMA; Wu et al. 2010)

from the S2S project (Vitart et al. 2017) averaged across

the indicated seasons spanning 1994–2013 at grid boxes

containing some major U.S. cities. Anomaly correlation

coefficient (ACC) and root-mean-square error (RMSE)

are the metrics shown in Figs. 5 and 6, respectively.

Results pairing the Kronecker distribution with the

window distribution instead of the Poisson distribution

(not shown) have broadly similar characteristics. Statistics

are shown across three parameters (forecast lead time, a,

and b), and each of the facets shows the average across the

range of the parameter perpendicular direction.Validation

is for all forecasts whose validation date, defined by fore-

cast lead time, is in the indicated season.

Common features emerge. For ACC, there is the

expected decrease of skill with increasing lead time.

However, the decrease in skill is clearly more gradual

for low values of a (i.e., shorter lead time at which

discrete to time-averaged transition occurs), and in

some cases the largest ACC is at intermediate lead

times of about 1 week (e.g., summer daily minimum

temperature for Atlanta). Meanwhile, for large values

of a, ACC decreases more rapidly with lead. Over

Atlanta and some other locations over the southeast-

ern United States (not shown), there is a minimum in

ACC between 10 and 15 days lead at large a values

with a gradual drop at longer leads. Atlanta also shows

very poor skill at all leads for daily maximum temper-

ature, and some apparent initialization issue affecting

minimum temperature, although skill for daily means is

very good in the first few days. At both very short (less

than 5 days) and very long (more than 15 days) lead

there is little sensitivity to the choice of a. There is also

little sensitivity in skill to the choice of b at short leads,

but a clear reduction in skill for low values of b (i.e.,

gradual transition from discrete to time-averaged) at

longer leads. The bottom facet of each panel shows how

skill varies across the ranges of a and b: low values of

a paired with large values of b consistently result in the

largest ACC values.

Similar results are seen for RMSE (Fig. 6) with

slightly different emphases. The largest RMSE usually

occurs at leads of around 10 days for large a values. Low

values of b, especially after about 10 days, also lead to

large RMSE. Otherwise features are similar as for ACC.

Recalling how a and b affect averaging, the skill

characteristics are evident. Large values of b give a

sharp transition from discrete to time-average forecasts.

Small values of a correspond to an early transition from

discrete to time-averaged forecasts. Together they act to

minimize the discrete realm of the forecast evolution,

FIG. 4. Effects on sample time series of blending Kronecker and

window distributions using the Hill function: (a) daily mean tem-

perature spanning 5 months for a grid cell in MERRA-2 and

(b) how the time series would appear as validation data when the

weighting function Wt,k is applied with values of a and b at initial

times indicated by the dates color-coded with the curves. The

window factor w 5 1.4. (c),(d) As in (a) and (b), but for gridded

analyzed daily precipitation from MSWEP.
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creating more of a broad time-mean for verification. This

favors the large-scale phenomena that affect forecasts

and deemphasize event-based aspects where forecast

models struggle.

However, the goal of choosing the parameters for a

seamless forecast is not to boost scores, but to provide

the most useful information for application of the fore-

casts. In Figs. 5 and 6, there is indication that model skill

for discrete forecasts drops off rapidly after 5 days lead.

That skill can be increased, and uncertainty decreased,

with the right parameter choices, leading to time mean

forecasts after just a few days, but this may not be what

users want or need.

c. Ensemble forecasts

Ensemble forecast characteristics can also be employed

with this method in the calculation of skill scores. In the

first example, we use the NCEPClimate Forecast System

(CFS) version 2 (Saha et al. 2014). CFS subseasonal

forecasts have only four ensemble members per day, so

we use the discrete ranked probability skill score (RPSSD;

Weigel et al. 2007), which is unbiased by removing the

effect of the nonzero expected ranked probability score

found for a small random ensemble, in addition to scaling

based on a climatological forecast. Forecasts for each

ensemble member are constructed for Poisson weighting

and various choices of a and b for the Hill function, to

complement the existing discrete forecast data. We use

three equal categories for temperature, based on the as-

sumption of a normal distribution (i.e., thresholds set at

60.967s). RPSSD 5 1 for a perfect categorical forecast,

and RPSSD5 0means no skill relative to a climatological

forecast.

Additionally, we use the ECMWF system, which

produces weekly initialized forecasts with 50 ensemble

members as part of the S2S prediction project (Vitart

et al. 2017). Heat wave occurrences are computed from

deterministic ECMWF forecasts of daily maximum

FIG. 5. Three-parameter plots of CMA forecast skill (anomaly correlation coefficient) averaged during 1999–2010 for the indicated

seasons and grid cells for (left) daily maximum temperature, (center) daily minimum temperature, and (right) daily mean temperature.

In each box, the color indicated the arithmetic mean along the perpendicular dimension.
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temperature, identifying heat wave days as those which

the maximum temperature exceeds the climatological

90th percentile. Maximum temperature climatologies

are computed separately by ensemble member, model

grid cell and forecast lead time. Similar to the treatment

of NCEP CFS forecasts, ECMWF discrete, binary heat

wave forecasts are constructed for each ensemble

member, and an ensemble probabilistic heat wave

forecast is then generated using all 50 ensemble

members. To the probabilistic forecasts we apply

Poisson weighting with various choices of a and b for

the Hill function to demonstrate how the weighting

can be used with the Brier skill score (BSS) to assess

model forecast skill.

Examples for a representative grid cell are shown in

Figs. 7 and 8. A number of features are found to be

common for temperature and heat wave forecasts over

CONUS, largely irrespective of season:

d The discrete forecast is typically competitive with

weighted forecasts out to about days 4–5, but becomes

clearly the worst forecast after about day 7.

d The largest spread among choices for Hill equation

parameters a and b are between 7 and 14 days (Fig. 7).

This illuminates week 2 as the critical period for

transition. Typically, the large a values have the low-

est skill—these represent maintaining the discrete

forecast the longest as the primary contributor to the

weighted combination.
d At long leads, small values of b often show a skill

advantage, particularly for CFS temperature fore-

casts. These are the forecasts with the smoothest,

least abrupt transition from discrete to time-averaged

weighting. However, this is something of a false skill

in that these forecasts have more weight on the very

short time scales many days prior to the centered

validation date. It is analogous to skill in month 1

forecasts that are derived almost entirely from the

first week. Furthermore, this smooth weighting is

not always an advantage—there are locations where

skill is poor at very short lead times, especially for

minimum temperature in this model. In these cases,

as with ECMWF probabilistic heat wave forecasts,

FIG. 6. As in Fig. 5, but for root-mean-square error. Also note that the locations are different than in Fig. 5.
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the forecasts with small b values have the lowest

skill scores at leads 20–30 days.
d At long leads, all choices of a and b converge to the

Poisson forecast. At 25–30 days, this has not quite

occurred for forecasts with some of the small b values,

but by day 45 (not shown) all are indistinguishable.

In the second example, 21-member ensemble fore-

casts by the Environment and Climate Change Canada

(ECCC) Global Environmental Model (GEM) (Lin

et al. 2016) out to 30 days from the 18 resolution SubX

dataset (Pegion et al. 2019) for the period of the

European heat wave of 2018 are used. The window

distribution by itself is applied with three different

values of the parameter w are compared to discrete

forecasts at a range of lead times. The ECCC-GEM

forecasts are made once per week, so there is not a

complete set of forecasts for all lead times validating on

any particular date. The initial state (IC) is on 0000UTC

of the indicated date, so the 1-day window for 19 July

initial states, for instance, is the daily mean for 19 July.

Figure 9 shows results for a single grid cell in south-

central England (528N, 18W). Figure 9a shows the vali-

dation targets of daily mean 2-m air temperature based

on ERA5 climatology during the 40-yr period of 1979–

2018, averaged to the SubX grid and as a function of the

width of the averaging window in days. A heat wave is

defined as a temperature at or exceeding the 95th per-

centile for the date, which is calculated separately for

each averaging window width. Generally, as the aver-

aging window widens, more dates are included, showing

that heat wave event was persistent if not entirely

consistent from day to day. Thus, many of the days

may not have been in the top-two warmest for the last

40 years, but lie within longer periods that were ex-

ceptionally warm.

The remaining panels show how the effect of the

forecast lead time on the width of the averaging window

alters the depiction of periods of extreme heat. Figure 9b

shows the number of forecast ensemble members whose

discrete day-by-day temperature forecast exceeded the

threshold for the given date. Figures 9c–e show simi-

lar validation statistics for different parameters of the

window function; the symbol indicates the width of

the window at the given lead time (refer to Fig. 1b). No

bias correction has been applied to these forecasts; the

intent is to demonstrate the effect of lead time and

FIG. 7. Time evolution of NCEP CFS ensemble forecast skill (discrete ranked probability skill score) averaged during 1999–2010 for

March–May and grid cell for the indicated temperature statistics. The solid black line is for purely discrete day-by-day forecasts, and the

dashed black line is purely Poisson-weighted forecasts. (top) Mean skill scores for 4 values of b are shown with shading for the spread

across 13 values of a from 2 to 14. (bottom)Mean skill scores for 5 values of a are shownwith the spread across 10 values of b from 1 to 10.
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averaging period on results, not rigidly validate the

model performance.

Pertinent to our original contention that precision of

timing is of diminishing importance compared to cap-

turing of the event as lead time increases, it can be seen

that more ensemble members tend to predict the heat

wave at longer lead times with the widening averaging

window than the discrete forecasts, which drop distinctly

with eachweek’s older initial date. This is clear both for the

event centered around 7 July, and the later event centered

around 25 July that contributes to the broadening of the

heat wave events with wider averaging windows.

FIG. 9. (a) Symbols mark dates with a heat wave based on ERA5 (1979–2018 climatology)

on the given dates in 2018 as a function of the width of the centered averaging window (each

width has a unique symbol). The same symbols are used in the remaining panels where color

indicates initial date of weekly ECCC ensemble forecasts: (b) discrete forecasts (no time

averaging), and (c)–(e) window weighting with parameter w5 1.0, 1.4, and 2.0, respectively.

Breaks in lines occur where the window width changes.

FIG. 8. Time evolution of ECMWF ensemble probabilistic heat wave forecast skill [Brier skill score (BSS)] over

the period 2015–19. The solid black line is purely discrete, and the dashed black line is purely Poisson weighted.

(left) BSS for 5 values of b with spread across 13 values of a from 2 to 14. (right) BSS for 5 values of a with spread

across values of b from 1 to 13.
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Figure 10 quantifies these ensemble forecast statistics

for this time period for the same grid cell based on heat

wave (historical top 5% of temperatures for the date)

versus no heat wave. Ensemble probability forecasts are

validated as Relative Operating Characteristic (ROC)

curves spanning a 3-month period to improve sample

size. The use of the uniform weighting window that ex-

pands with time clearly improves areas under the ROC

curves over unweighted discrete forecasts beyond the

first 5-day validation period (more so asw increases) and

increases the probability of detection. At 25–29 days

lead there were no points for the w5 2 case besides the

corners. A much larger sample would clarify these traits

and is advisable before any general application of these

methods as a means to select the best parameters for

weighting functions.

Finally, we show an example of the 2-m temperature

field and ECCC-GEM ensemble forecast statistics for

the extreme heat event over Northern Europe for the

validation date of 19 July 2018 in Fig. 11. Slight varia-

tions in temperature contours among panels are due to

the differing number of days included in the averaging

window–extreme heat thresholds are calculated sepa-

rately for each window width. The rows correspond with

forecast lead times of 2, 9, 16, and 23 days from top to

bottom. At very short leads, nearly every grid cell has

either 21 (white) or 0 (darkest gray) members predicting

extreme heat as the ensemble has not spread much; the

color distribution bar at the bottom of the panels shows

this dichotomy clearly. As forecast lead increases, the

gray shades spread out more uniformly, but the wider

averaging windows (right side of figure) tend tomaintain

the heat wave forecasts. White or light areas corre-

sponding to the stippled area, where extreme heat

events occur in ERA5, indicate better forecasts and

better (lower) Brier scores (BS) (Brier 1950). Weighting

w5 2.0 gives the best Brier scores; w5 1.4 gives slightly

better scores than w 5 1.0 out to 16 days in this case,

after which w 5 1.0 is best. The deterministic ECCC-

GEM ensemble forecast at longer leads extends well

south and east of the Baltic Sea (bottom-left panel),

which is an area registering a heat wave in the wider

averaging windows (7–17 days). This is a clear example

of small errors in forecast timing at subseasonal time

scales punishing the long lead forecast skill in the de-

terministic context, while being usefully skillful when

the timing demands are relaxed.

4. Discussion

We have presented a general framework to transition

numerical predictions seamlessly from discrete (valid on

FIG. 10. Heat wave ensemble forecast statistics based on a ‘‘heat wave’’ vs ‘‘no heat wave’’ forecasts validated during 1 Jun–30Aug 2018

for the grid cell in Fig. 9 as a function of forecast lead time and window weighting parameter w. Each panel is for all valid forecasts at the

indicated lead times from ECCC.
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the shortest time interval of forecast data, i.e., daily

values in these examples) to time-mean (multiple days)

periods of validation that can be applied to deterministic

or probabilistic forecasts of both continuous and non-

continuous (e.g., binary) variables on subseasonal time

scales. The technique presents a general solution to

transition from discrete daily weather forecasts to any

sort of weighting approach thatmight be applied to time-

average forecasts at longer leads. The two-parameter Hill

function can be used to blend the two types of forecasts in a

way that controls the transition rate from one to the other

and the crossover point beyond which the time-averaged

forecast receives more weight than the discrete forecast.

This approach provides more control than either the

Poisson or window weights which have been used for this

purpose in previous studies. The technique applies a

Kronecker delta weight to designate discrete forecasts and

examples for time-averaged forecasts using both Poisson

function weights and uniform window weighting with a

window that widens with increasing lead time, although

any form of time-averaging can be used.

This seamless methodology does require a more com-

plicated observed climatology, with two time dimensions,

for anomaly estimation and validation. For any date, the

model climatology is also a function of the forecast lead

because the averaging window grows with forecast lead.

This 2D time construct actually should be used for any

modelwith time evolving errors (i.e., drift), which is to say

every numerical forecast model. However, it is absolutely

essential for the method described here, as the temporal

FIG. 11. Probabilistic heat wave forecast validation over Europe from the ECCC-GEM forecasts. Rows are for different initialization

dates as indicated in the headers of each panel; columns are for (left) discrete forecasts of daily temperature and (remaining columns) the

window distribution with the indicatedw parameter yielding averages over the indicated windows centered on 20 Jul 2018. Contours show

2-m air temperature fromERA5 averaged over the samewindows. Stippling shows the areawhere extreme heat ($95th percentile) for the

averaging period exists in ERA5. Gray shades indicate the number of ensemble members predicting an extreme event for the averaging

period; the color spectrum beneath each panel shows the proportional area for each value. Two Brier scores are shown above each panel,

calculated over the domain.
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span of forecast validation changes greatly over lead time.

With that said, the climatological behavior of model

forecasts weighted using this procedure are not neces-

sarily different from those evaluated purely discretely.

This is evidenced in the chiclet chart (Fig. 12) showing

forecasted maximum temperature heat wave frequency

over the contiguous United States between June and

August 2012 from the NCEP Global Ensemble Forecast

System (GEFS; Zhou et al. 2017). However, the seamless

method provides a degree of stability from forecast to

forecast and between adjacent days at medium and ex-

tended ranges that discrete forecasts do not provide.

GEFS maximum temperature forecast skill (ACC) veri-

fied using the seamless method persists to longer leads

than when verified using either purely discrete verification

or a time-invariant Poisson weighting window method,

consistent with Fig. 12 (Fig. 13). Effectively, the rapid error

and uncertainty growth of discrete deterministic forecasts

is moderated by the seamless transition and growing av-

eraging window (Buizza et al. 2015).

The Poisson and window functions presented here

have an aspect of transition to ever widening averaging

windows with increasing lead time, but on their own

have limited flexibility for choosing the lead time at

which discrete forecasts progress to time averages. A

feature of the Hill equation is the tunability of the pa-

rameters that control the transition. One is free to

choose the appropriate transition center a, and width

(inversely related to b) to fit the application. The pa-

rameters should probably be different for different fore-

cast variables (e.g., lower values of a for precipitation

than temperature). They could be made to vary with

season, as the range of deterministic predictability, usu-

ally the most desired form of prediction, varies through-

out the year in many locations. They could also vary

spatially for the output of a single forecast model, also to

take advantage of differences in the range of determin-

istic predictability. If a uniform window averaging is used

as the time-average component, an additional parameter

w is available to control the evolution of the validation

window with lead time. The Hill function can be applied

to the Kronecker1 Poisson combination, the Kronecker

1 window combination, or other combinations such as

Kronecker 1 lognormal to seamlessly transition from

discrete to time-averaged forecasts.

It is an open question at this time whether there is an

objective, quantitative approach to optimize the choice

of the parameters. The transition with lead time from

discrete-dominated forecasts to time-average dominated

is the ‘‘seam.’’ The choice of a might best be made in

accordance with the point at which significant discrete

forecast skill is generally lost, or to minimize the growth

of forecast uncertainty with lead time. Determining

such a point is a matter of estimating predictability, eas-

ier done for the forecast model than observations.

Predictability loss in models could potentially be used

as an emergent constraint (Hall et al. 2019) to estimate

the transition point in observations.

FIG. 12. Chiclet chart showing the number of CONUS grid points

where GEFS maximum temperature ensemble forecasts indicate a

heat wave day during summer 2012. (top) Discrete daily forecasts,

(middle) purely Poisson weighted, and (bottom) weighting with

values of b 5 7 and a 5 5.

FIG. 13. GEFS maximum temperature forecast spatial anomaly

correlation coefficient as a function of forecast lead time, using data

from Fig. 12. Forecasts are verified using an unweighted, purely

discrete verification (red line), a time-invariant, equal-weight

window averaging verification (blue line), and the time-variation

transitional weighting method proposed here (black line). The

dashed lines indicate the lead time at which the forecast ACC falls

below 0.6 based on the three verification approaches.
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Meanwhile, the sharpness of the seam is controlled by

the value of b. Its choice may be more of a subjective

one. What this approach to seamless transitioning ac-

complishes is to level the increase in uncertainty with

forecast lead–if uncertainty can be quantified, perhaps

most practically quantified by forecast error or ensemble

spread, it could be used as a metric to choose b.

Regardless of the choices, at very long leads the Poisson

functional form dominates, and converges to a normal

distribution, center-weighted on the validation day. The

window function likewise spreads with lead time. This

makes a smooth time-mean quantity with a window that

widens gradually with lead time, as shown in Fig. 1.

Using the Hill function to transition from discrete

(Kronecker delta) to time-averaged (window function)

forecasts provides three separate parameters and thus 3

degrees of freedom to tailor the seamless approach to

the subseasonal forecast situation.

One could imagine the best choice of both parameters

would depend on the application. The balance most

amenable for emergency responders might be different

than for the power generation industry, or the general

public. On the other hand, it means forecasts can be

tailored to multiple applications, as the Hill function

provides great versatility with only two parameters. All

that is needed is the two sets of forecasts in hand: the

discrete day-by-day model output, and the Poisson or

window distribution average. The final form of the

seamless forecast is simply a linear combination of the

two, and different versions of a final forecast can be

produced from the same two sets as a postprocessing

step.Whether the proposed approach is advantageous in

any particular situation would need to be explored

on a case by case basis, just like any other existing

model methods. The ability to compensate smoothly

for the natural increase in uncertainty with forecast

lead could be useful in many applications. The gen-

eralized technique presented here is not meant to

construct forecasts with the highest skill, but to con-

struct forecasts with the highest utility across time

scales from weather to subseasonal in a single seam-

less product.
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